答案:A
考慮 $\Delta BCE$,由於 $BC=CE$,所以 $\angle CBE = \angle CEB$。所以,可得
考慮 $\Delta BCE$,由於 $BC=CE$,所以 $\angle CBE = \angle CEB$。所以,可得
$\begin{array}{rcl}
\angle CBE & = & \dfrac{1}{2} ( 180^\circ – 40^\circ) \\
& = & 70^\circ
\end{array}$
由於 $ABE$ 為一直線,可得
$\begin{array}{rcl}
\angle ABC & = & 180^\circ – \angle CBE \\
& = & 180^\circ – 70^\circ \\
& = & 110^\circ
\end{array}$
由於 $ABCD$ 為一菱形,可得
$\begin{array}{rcl}
\angle ABC & = & \angle ADC \\
& = & 110^\circ
\end{array}$
由於 $ABCD$ 為一菱形,$AD = DC$。所以 $\angle CAD = \angle ACD$。由此,可得
$\begin{array}{rcl}
\angle CAD & = & \dfrac{1}{2} (180^\circ – 110^\circ) \\
& = & 35^\circ
\end{array}$