答案:(a) (i) $(36,3)$ (ii) $\dfrac{-1}{144}(x-32)^2+8$ (iii) $2^{\frac{-1}{144}(x-32)^2+3}+5$ (b) (i) $36^\circ\text{C}$ (ii) $v=2^{\frac{-1}{144}(t-32)^2+3}+5$
-
- 利用配方法,可得
$\begin{array}{rcl}
f(x) & = & \dfrac{1}{2} x-\dfrac{1}{144}x^2 – 6 \\
& = & \dfrac{-1}{144}(x^2 – 72x) – 6 \\
& = & \dfrac{-1}{144}(x^2 – 72x + 36^2 – 36^2) – 6 \\
& = & \dfrac{-1}{144}(x-36)^2 + 9 – 6 \\
& = & \dfrac{-1}{144}(x-36)^2 + 3
\end{array}$所以,$f(x)$ 圖像的頂點為 $(36,3)$。
-
$\begin{array}{rcl}
g(x) & = & f(x + 4) + 5 \\
& = & \dfrac{-1}{144}[(x+4) – 36]^2 + 3 + 5 \\
& = & \dfrac{-1}{144}(x-32)^2 + 8
\end{array}$ -
$\begin{array}{rcl}
h(x) & = & 2^{f(x+4)} + 5 \\
& = & 2^{\frac{-1}{144}[(x+4) – 36]^2 + 3} +5 \\
& = & 2^{\frac{-1}{144}(x-32)^2 + 3} + 5
\end{array}$
- 利用配方法,可得
-
- 把 $u=8$ 代入 $u=2^{f(s)}$,可得
$\begin{array}{rcl}
8 & = & 2^{f(s)} \\
2^3 & = & 2^{f(s)} \\
3 & = & f(s) \\
3 & = & \dfrac{-1}{144}(s-36)^2 + 3 \\
(s-36)^2 & = & 0 \\
s & = & 36
\end{array}$所以,所求的溫度為 $36^\circ\text{C}$。
- 透過觀察表 1(a) 及表 1(b),可得 $s=t+4$ 及 $u=v-5$。由此,可得
$\begin{array}{rcl}
u & = & 2^{f(s)} \\
v-5 & = & 2^{f(t+4)} \\
v & = & 2^{\frac{-1}{144}[(t+4)-36]^2 + 3} +5 \\
& = & 2^{\frac{-1}{144}(t-32)^2 + 3} + 5
\end{array}$
- 把 $u=8$ 代入 $u=2^{f(s)}$,可得