答案:(a) $\dfrac{19}{24}$ (b) (i) $\dfrac{5}{9}$ (ii) $\dfrac{2}{99}$ (iii) 是
- 所求的概率
$\begin{array}{cl}
= & \dfrac{9}{12} \times \dfrac{5}{6} + \dfrac{3}{12}\times \dfrac{2}{3} \\
= & \dfrac{19}{24}
\end{array}$ -
- 所求的概率
$\begin{array}{cl}
= & \dfrac{5}{6} \times \dfrac{2}{3} \\
= & \dfrac{5}{9}
\end{array}$ - 所求的概率
$\begin{array}{cl}
= & \dfrac{3}{12}\times \dfrac{2}{3} \times \dfrac{2}{11} \times \dfrac{2}{3} \\
= & \dfrac{2}{99}
\end{array}$ - 兩名顧客不作投訴的概率
$\begin{array}{cl}
= & \dfrac{9}{12}\times \dfrac{5}{6} \times \dfrac{8}{11} \times \dfrac{5}{6} + 2 \times \dfrac{9}{12}\times \dfrac{3}{11} \times \dfrac{5}{9} + \dfrac{2}{99} \\
= & \dfrac{62}{99} \\
> & \dfrac{1}{2}
\end{array}$所以,兩名顧客不作投訴的概率大於他們均作出投訴的概率。
- 所求的概率