答案:C
設 $a$ 及 $r$ 分別為該等比數列的首項及公比,則可得
設 $a$ 及 $r$ 分別為該等比數列的首項及公比,則可得
$\left\{ \begin{array}{ll}
a \times ar = 18 & \ldots \unicode{x2460} \\
ar^2 \times ar^3 =288 & \ldots \mycirc{2}\unicode{x2461}
\end{array} \right.$
$\unicode{x2461} \div \unicode{x2460}$,可得
$\begin{array}{rcl}
r^4 & = & 16 \\
r & = & 2 \ \text{ 或 } -2\text{ (捨去)}
\end{array}$
把 $r=2$ 代入 $\unicode{x2460}$,可得
$\begin{array}{rcl}
a^2 (2) & = & 18 \\
a^2 & = & 9
\end{array}$
所以,該數列的第 4 項及第 5 項之積
$\begin{array}{cl}
= & ar^3 \times ar^4 \\
= & a^2 r^7 \\
= & 9 \times 2^7 \\
= & 1152
\end{array}$