答案:(a) $73\ 728\pi\text{ cm}^3$ (b) (i) $144\ 000\pi\text{ cm}^3$ (ii) 不同意
- 該圓錐體的體積
$\begin{array}{cl}
= & \dfrac{1}{3} \pi (48)^2 (96) \\
= & 73~728\pi\mbox{ cm}^3
\end{array}$ -
- 在容器內牛奶的體積
$\begin{array}{cl}
= & \dfrac{1}{2} \times \dfrac{4}{3}\pi (60)^3 \\
= & 144~000\pi\mbox{ cm}^3
\end{array}$ - 設 $h\mbox{ cm}$ 及 $b\mbox{ cm}$ 分別為浸在牛奶內的平截頭體的高及底的長度。所以,可得
$\begin{array}{rcl}
h & = & \sqrt{60^2-48^2} \\
& = & 36
\end{array}$另外,
$\begin{array}{rcl}
\dfrac{b}{48} & = & \dfrac{96-36}{96} \\
b & = & 30
\end{array}$所以,該平截頭體的體積
$\begin{array}{cl}
= & 73~728\pi-\dfrac{1}{3}\pi (30)^2(96-36) \\
= & 55~728\pi \mbox{ cm}^3
\end{array}$由此,在容器內餘下的牛奶的體積
$\begin{array}{cl}
= & 144~000\pi-55~728\pi \\
= & 277~314.667\mbox{ cm}^3 \\
= & 0.277314667 \mbox{ m}^3 \\
< & 0.3 \mbox{ m}^3 \end{array}$所以,我不同意該宣稱。
- 在容器內牛奶的體積