答案:D
$\left\{\begin{array}{ll}
x-\log y = 2 & \ldots \unicode{x2460} \\
x^2 – \log y^2 -10 = 2 & \ldots \unicode{x2461}
\end{array}\right.$
$\left\{\begin{array}{ll}
x-\log y = 2 & \ldots \unicode{x2460} \\
x^2 – \log y^2 -10 = 2 & \ldots \unicode{x2461}
\end{array}\right.$
從 $\unicode{x2460}$,可得
$\begin{array}{rcl}
x-\log y & = & 2 \\
x & = & 2+ \log y \ldots \unicode{x2462}
\end{array}$
把 $\unicode{x2462}$ 代入 $\unicode{x2461}$,可得
$\begin{array}{rcl}
(2+\log y)^2 – \log y^2 -10 & = & 2 \\
(\log y)^2 + 4 \log y + 4 -2\log y -12 & = & 0 \\
(\log y)^2 +2\log y -8 & = & 0 \\
(\log y +4)(\log y -2) & = & 0
\end{array}$
所以,$\log y = -4$ 或 $\log y =2$。
因此,$y = 10^{-4} = \dfrac{1}{10~000}$ 或 $y= 10^2 = 100$。