- 所求的概率
$\begin{array}{cl}
= & \dfrac{1}{6} + \dfrac{5}{6} \times \dfrac{5}{6} \times \dfrac{1}{6} + \ldots \\
= & \dfrac{\frac{1}{6}}{1-(\frac{5}{6})^2} \\
= & \dfrac{6}{11}
\end{array}$ -
- 得到 $10$ 個代幣的概率
$\begin{array}{cl}
= & \dfrac{1}{8}\times \dfrac{1}{8} \times 8 \\
= & \dfrac{1}{8}
\end{array}$得到 $5$ 個代幣的概率
$\begin{array}{cl}
= & \dfrac{7}{8}\times \dfrac{1}{8} + \dfrac{7}{8}\times \dfrac{1}{8} \\
= & \dfrac{7}{32}
\end{array}$所以,得到代幣數目的期望值
$\begin{array}{cl}
= & 10 \times \dfrac{1}{8} + 5 \times \dfrac{7}{32} + 0 \times (1- \dfrac{1}{8} – \dfrac{7}{32}) \\
= & \dfrac{75}{32}
\end{array}$ - 考慮選項 2。得到 $50$ 個代幣的概率
$\begin{array}{cl}
= & \dfrac{1}{8}\times \dfrac{1}{8} \times \dfrac{1}{8} \times 8 \\
= & \dfrac{1}{64}
\end{array}$得到 $10$ 個代幣的概率
$\begin{array}{cl}
= & \dfrac{1}{8} \times \dfrac{2}{8} \times \dfrac{1}{8} \times 6 + \dfrac{1}{8} \times \dfrac{2}{8} \times \dfrac{1}{8} \times 6 + \dfrac{1}{8} \times \dfrac{2}{8} \times \dfrac{1}{8} \times 6 \\
= & \dfrac{9}{128}
\end{array}$得到 $5$ 個代幣的概率
$\begin{array}{cl}
= & \dfrac{C^3_2 \times 7 \times 2}{8^3} \\
= & \dfrac{21}{256}
\end{array}$所以,得到代幣數目的期望值
$\begin{array}{cl}
= & 50 \times \dfrac{1}{64} + 10 \times \dfrac{9}{128} + 5 \times \dfrac{21}{256} + 0 \times (1 – \dfrac{1}{64} – \dfrac{9}{128} – \dfrac{21}{256} )\\
= & \dfrac{485}{256}
\end{array}$由於 $\dfrac{75}{32} > \dfrac{485}{256}$,參與者第二回合應選擇選項 1。
- 佩玲未能得到代幣的概率
$\begin{array}{cl}
= & 1 – \dfrac{6}{11} \times ( \dfrac{1}{8} + \dfrac{7}{32} ) \\
= & \dfrac{13}{16} \\
= & 0.8125 \\
< & 0.9 \end{array}$所以,該宣稱不正確。
- 得到 $10$ 個代幣的概率
2014-I-19
答案:(a) $\dfrac{6}{11}$ (b) (i) $\dfrac{75}{32}$ (ii) 選項 1 (iii) 不正確