I 必為正確。由於 $x_1 = a_{50}$,則對於第一組數字,
$\begin{array}{rcl}
\dfrac{a_1 + a_2 + \cdots + a_{49} + x_1}{50} & = & x_1 \\
a_1 + a_2 + \cdots + z_{49} & = & 49x_1
\end{array}$
對於第二組數字,
$\begin{array}{rcl}
\dfrac{a_1 + a_2 + \cdots + a_{49}}{49} & = & x_2 \\
\dfrac{49x_1}{49} & = & x_2 \\
x_1 & = & x_2
\end{array}$
II 未必正確。不失其一般性,假定 $a_1\le a_2\le \ldots \le a_{49}$。設 $a_{23} = x_1$。對於第一組數字,
$\begin{array}{rcl}
y_1 & = & \dfrac{a_{24} + a_{25}}{2}
\end{array}$
對於第二組數字,
$\begin{array}{rcl}
y_2 & = & a_{25}
\end{array}$
留意 $a_{24} \le a_{25}$。所以
$\begin{array}{rcl}
\dfrac{a_{24} + a_{25}}{2} & \le & a_{25} \\
y_1 & \le & y_2
\end{array}$
III 必為正確。由於 $x_1=a_{50}$,則對於第一組數字,
$\begin{array}{rcl}
z_1 & = & \dfrac{(a_1 – x_1)^2 + \cdots + (a_{49}-x_1)^2 + (x_1 – x_1)^2}{50} \\
z_1 & = & \dfrac{(a_1 – x_1)^2 + \cdots + (a_{49}-x_1)^2}{50} \ \ldots \unicode{x2460}
\end{array}$
由於 $x_1=x_2$,則第於第二組數字,
$\begin{array}{rcl}
z_2 & = & \dfrac{(a_1 – x_2)^2 + \cdots + (a_{49}-x_2)^2}{49} \\
z_2 & = & \dfrac{(a_1 – x_1)^2 + \cdots + (a_{49}-x_1)^2}{49} \ \ldots \unicode{x2461}
\end{array}$
透過比較 $\unicode{x2460}$ 及 $\unicode{x2461}$,可得 $z_1\le z_2$。