連結 $AC$。
在四邊形 $ABCD$,
$\begin{array}{rcll}
\angle ADC & = & 180^\circ – \angle ABC & \text{(圓內接四邊形的對角)} \\
\angle ADC & = & 180^\circ – 110^\circ \\
\angle ADC & = & 70^\circ
\end{array}$
由於 $AD$ 為一直徑,則 $\angle ACD = 90^\circ$ (半圓上的圓周角)。
在 $\Delta ACD$ 中,
$\begin{array}{rcll}
\angle CAD & = & 180^\circ – \angle ACD – \angle ADC & \text{($\Delta$ 的內角和)} \\
\angle CAD & = & 180^\circ – 90^\circ – 70^\circ \\
\angle CAD & = & 20^\circ
\end{array}$
另外,
$\begin{array}{rcll}
BC & = & CD & \text{(已知)} \\
\overparen{BC} & = & \overparen{CD} & \text{(等弦對等弧)} \\
\angle BAC & = & \angle CAD & \text{(弧長與圓周角成比例)} \\
\angle ABC & = & 20^\circ &
\end{array}$
由此,可得
$\begin{array}{rcll}
\angle BED & = & \angle BAD & \text{(同弓形內的圓周角)} \\
\angle BED & = & \angle BAC + \angle CAD \\
\angle BED & = & 20^\circ + 20^\circ \\
\angle BED & = & 40^\circ
\end{array}$