- 在 $\Delta ABE$ 及 $\Delta ECD$ 中,
$\begin{array}{rcll}
\angle ABE + \angle ECD & = & 180^\circ & \text{(錯角,$AB//DC$)} \\
90^\circ + \angle ECD & = & 180^\circ & \text{(已知)} \\
\angle ECD & = & 90^\circ \\
\angle ABE & = & \angle ECD
\end{array}$另外,
$\begin{array}{rcll}
\angle BAE + \angle ABE & = & \angle AEC & \text{($\Delta$ 的外角)} \\
\angle BAE + \angle ABE & = & \angle AED + \angle DEC \\
\angle BAE + 90^\circ & = & 90^\circ + \angle DEC & \text{(given)}\\
\angle BAE & = & \angle DEC
\end{array}$由此,可得
$\begin{array}{rcll}
\angle AEB & = & 180^\circ – \angle ABE – \angle BAE & \text{($\Delta$ 的內角和)} \\
& = & 180^\circ – \angle ECD – \angle CDE & \text{(已證)} \\
& = & \angle EDC & \text{($\Delta$ 的內角和)}
\end{array}$$\therefore \Delta ABE \sim \Delta ECD \ \text{(A.A.A.)}$。
-
- 由於 $\Delta ABE \sim \Delta ECD$,可得
$\begin{array}{rcll}
\dfrac{AB}{EC} & = & \dfrac{AE}{ED} & \text{($\sim \Delta$ 的對應邊)} \\
\dfrac{15}{36} & = & \dfrac{25}{ED} \\
ED & = & 60 \text{ cm}
\end{array}$由於 $\angle ECD = 90^\circ$ ((a) 部已證),可得
$\begin{array}{rcll}
CD^2 & = & ED^2 – EC^2 & \text{(畢氏定理)} \\
CD^2 & = & 60^2 – 36^2 \\
CD & = & 48\text{ cm}
\end{array}$ - 已知 $\angle AED = 90^\circ$,則 $\Delta ADE$ 的面積
$\begin{array}{cl}
= & \dfrac{1}{2} \times AE \times ED \\
= & \dfrac{1}{2} \times 25 \times 60 \\
= & 750\text{ cm}^2
\end{array}$ - 已知 $\angle AED = 90^\circ$,可得
$\begin{array}{rcll}
AD^2 & = & AE^2 + ED^2 & \text{(畢氏定理)} \\
AD^2 & = & 25^2 + 60^2 \\
AD & = & 65\text{ cm}
\end{array}$設 $h\text{ cm}$ 為以 $AD$ 為底時的高。留意 $h\text{ cm}$ 為由 $E$ 至 $AD$ 的最短距離。利用 (b)(ii) 的結果,可得
$\begin{array}{rcl}
\dfrac{1}{2} \times h \times AD & = & 750 \\
\dfrac{1}{2} \times h \times 65 & = & 750 \\
h & = & 23.076\ 923\ 08 \\
h & > & 23
\end{array}$由於由 $E$ 至 $AD$ 的最短距離大於 $23\text{ cm}$,所以在 $AD$ 之上沒有一點 $F$ 使得 $E$ 與 $F$ 間的距離小於 $23\text{ cm}$。
- 由於 $\Delta ABE \sim \Delta ECD$,可得
2018-I-13
答案:(b) (i) $48\text{ cm}$ (ii) $750\text{ cm}^2$ (iii) 沒有