-
- 在 $\Delta BCG$ 及 $\Delta CBF$ 中,
$\begin{array}{rcll}
BC & = & CB & \text{(公共邊)} \\
\angle CBG & = & \angle BCF & \text{(錯角,$BG//EC$)} \\
\angle BCG & = & \angle CBF & \text{(錯角,$CG//DB$)} \\
\end{array}$所以,$\Delta BCG \cong \Delta CBF\ \text{(A.S.A.)}$。
- 由於 $ABCD$ 為正方形,可得 $AD// BC$ 及 $AB // DC$ (正方形的性質)。
在 $\Delta BCF$ 及 $\Delta DEF$,
$\begin{array}{rcll}
\angle BFC & = & \angle DFE & \text{(對頂角)} \\
\angle BCF & = & \angle DEF & \text{(錯角,$AD//BC$)} \\
\angle CBF & = & \angle EDF & \text{(錯角,$AD//BC$)}
\end{array}$所以,$\Delta BCF \sim \Delta DEF\ \text{(A.A.A.)}$。
- 在 $\Delta BCG$ 及 $\Delta CBF$ 中,
-
- 在 $\Delta BCF$ 中,
$\begin{array}{rcll}
\angle BFC & = & \angle CGB & \text{($\cong \Delta$ 的對應角)} \\
\angle BCF & = & \angle BGC & \text{(已知)} \\
\angle BCF & = & \angle BFC \\
BF & = & BC & \text{(等角對等邊)}
\end{array}$在 $\Delta BCD$,
$\begin{array}{rcll}
\angle BDC & = & 45^\circ & \text{(正方形性質)} \\
\sin \angle BDC & = & \dfrac{BC}{BD} \\
\sin 45^\circ & = & \dfrac{BC}{BF + DF} \\
\dfrac{1}{\sqrt{2}} & = & \dfrac{\ell}{\ell + DF} \\
\ell + DF & = & \sqrt{2} \ell \\
DF & = & (\sqrt{2} – 1) \ell
\end{array}$ - 由於 $\Delta BCF \sim \Delta DEF$,可得
$\begin{array}{rcll}
\dfrac{BC}{DE} & = & \dfrac{BF}{DF} & \text{($\sim \Delta$ 的對應邊)} \\
\dfrac{\ell}{DE} & = & \dfrac{\ell}{(\sqrt{2} – 1) \ell} \\
DE & = & (\sqrt{2} – 1) \ell
\end{array}$所以,可得
$\begin{array}{rcl}
AE & = & AD – DE \\
& = & \ell – (\sqrt{2} – 1) \ell \\
& = & (2 – \sqrt{2}) \ell \\
& = & 0.585\ 786\ 437 \ell \\
\end{array}$利用 (b)(i) 的結果,可得
$\begin{array}{rcl}
DF & = & (\sqrt{2} – 1) \ell \\
DF & = & 0.414\ 213\ 562 \ell \\
& < & 0.585\ 786\ 437 \ell \\ & = & AE \end{array}$所以,我同意該宣稱。
- 在 $\Delta BCF$ 中,
2019-I-14
答案:(b) (i) $(\sqrt{2}-1)\ell$ (ii) 同意