設 $x = \angle ACD$。
在 $\Delta BCD$中,
$\begin{array}{rcll}
BC & = & CD & \text{(已知)} \\
\angle CBD & = & \angle BDC & \text{(等腰 $\Delta$ 的底角)} \\
\angle CBD & = & \dfrac{1}{2} (180^\circ – x) & \text{($\Delta$ 的內角和)}
\end{array}$
在 $\Delta ABD$ 中,
$\begin{array}{rcll}
AB & = & BD & \text{(已知)} \\
\angle BAD & = & \angle BDA & \text{(等腰 $\Delta$ 的底角)} \\
2\angle BAD & = & \angle CBD & \text{($\Delta$ 的外角)} \\
2\angle BAD & = & \dfrac{1}{2} (180^\circ – x) \\
\angle BAD & = & \dfrac{1}{4} (180^\circ – x) \\
\end{array}$
在 $\Delta ACD$ 中,
$\begin{array}{rcll}
\angle CAD + \angle ACD & = & \angle CDE & \text{($\Delta$ 的外角)} \\
\dfrac{1}{4} ( 180^\circ – x) + x & = & 66^\circ \\
180^\circ – x + 4x & = & 264^\circ \\
3x & = & 84^\circ \\
x & = & 28^\circ
\end{array}$