考慮 $\Delta ADF$ 及 $\Delta AEC$。由於 $AD = DE$ 及 $DF // EC$,則可得
$\begin{array}{rcll}
AF & = & FC & \text{(截線定理)} \\
AF & = & \dfrac{1}{2} AC
\end{array}$
由於 $AD = DE$ 及 $AF = FC$,可得
$\begin{array}{rcll}
DF & = & \dfrac{1}{2} EC & \text{(中點定理)} \\
DF & = & \dfrac{1}{2} \times 60 \\
DF & = & 30 \text{ cm}
\end{array}$
由於 $\Delta ABC$ 為等腰三角形,其中 $AB = AC$,可得
$\begin{array}{rcl}
AF & = & \dfrac{1}{2} AB
\end{array}$
在 $\Delta ADF$ 及 $\Delta EDF$ 中,
$\begin{array}{rcll}
AD & = & ED & \text{(已知)} \\
DF & = & DF & \text{(公共邊)} \\
\angle ADF & = & \angle EDF & \text{(直線上的鄰角)}
\end{array}$
所以,$\Delta ADF \cong \Delta EDF \ \text{(S.A.S.)}$。由此,可得
$\begin{array}{rcll}
EF & = & AF & \text{($\cong \Delta$ 的對應邊)} \\
EF & = & \dfrac{1}{2} AB
\end{array}$
在 $\Delta DEF$ 運用畢氏定理,可得
$\begin{array}{rcl}
EF^2 & = & DF^2 + DE^2 \\
(\dfrac{1}{2} AB)^2 & = & 30^2 + (\dfrac{2}{5} AB)^2 \\
\dfrac{1}{4} AB^2 & = & 900 + \dfrac{4}{25} AB^2 \\
\dfrac{9}{100} AB^ 2 & = & 900 \\
AB^2 & = & 10000 \\
AB & = & 100 \text{ cm}
\end{array}$
所以,可得
$\begin{array}{rcl}
EF & = & \dfrac{1}{2} AB \\
EF & = & \dfrac{1}{2} \times 100 \\
EF & = & 50\text{ cm}
\end{array}$