- 在 $\Delta UTV$ 及 $\Delta WTU$,
$\begin{array}{rcll}
\angle UTV & = & \angle WTU & \text{(公共角)} \\
\angle VUT & = & \angle UWT & \text{(內錯弓形的圓周角)} \\
\angle UVT & = & 180^\circ – \angle UTV – \angle VUT & \text{($\Delta$ 的內角和)} \\
& = & 180^\circ – \angle WTU – \angle UWT & \text{(已證)} \\
& = & \angle WUT & \text{($\Delta$ 的內角和)}
\end{array}$所以,$\Delta UTV \sim \Delta WTU\ \text{(A.A.A.)}$。
-
- 根據 (a) 的結果,可得
$\begin{array}{rcll}
\dfrac{TU}{TW} & = & \dfrac{TV}{TU} & \text{($\sim \Delta$ 的對應邊)} \\
\dfrac{TU}{WV + TV} & = & \dfrac{TV}{TU} \\
\dfrac{780}{WV + 325} & = & \dfrac{325}{780} \\
608400 & = & 325 WV + 105625 \\
325 WV & = & 502775 \\
WV & = & 1547 \text{ cm}
\end{array}$所以,$C$ 的圓周
$\begin{array}{cl}
= & WV \times \pi \\
= & 1547 \pi \text{ cm}
\end{array}$ - 由於 $VW$ 為 $C$ 的直徑,$\angle VUW = 90^\circ$ $\text{(半圓上的圓周角)}$。由此,在 $\Delta UVW$ 運用畢氏定理,可得
$\begin{array}{rcl}
UV^2 + UW^2 & = & WV^2 \ \ldots \unicode{x2460}
\end{array}$根據 (a) 的結果,可得
$\begin{array}{rcll}
\dfrac{UV}{WU} & = & \dfrac{TV}{TU} & \text{($\sim \Delta$ 的對應邊)} \\
\dfrac{UV}{WU} & = & \dfrac{325}{780} \\
UV & = & \dfrac{5}{12} WU \ \ldots \unicode{x2461}
\end{array}$把 $\unicode{x2461}$ 代入 $\unicode{x2460}$,可得
$\begin{array}{rcl}
(\dfrac{5}{12}WU)^2 + WU^2 & = & WV^2 \\
\dfrac{25}{144} WU^2 + WU^2 & = & (1547)^2 \\
WU & = & 1428 \text{ cm}
\end{array}$把 $WU = 1428$ 代入 $\unicode{x2461}$,可得
$\begin{array}{rcl}
UV & = & \dfrac{25}{144} \times 1428 \\
& = & 595\text{ cm}
\end{array}$由此,$\Delta UVW$ 的周界
$\begin{array}{cl}
= & 1547 + 595 + 1425 \\
= & 3570 \text{ cm} \\
= & 35.5\text{ m} \\
> & 35 \text{ m}
\end{array}$所以,我同意該宣稱。
- 根據 (a) 的結果,可得
2020-I-18
答案:(b) (i) $1547\pi\text{ cm}$ (ii) 同意