I 為正確。由於 $ABCD$ 為一長方形,$AB\text{//}DC$。由此,可得
$\begin{array}{rcll}
\angle ABE & = & \angle DGF & \text{(同位角,$AB$//$DC$)} \\
\end{array}$
在 $\Delta ABE$ 中,
$\begin{array}{rcll}
\angle AEB & = & 90^\circ & \text{(已知)} \\
\angle ABE & = & 180^\circ -\angle AEB- \angle BAE & \text{(三角形的內角和)} \\
\angle ABE & = & 180^\circ -90^\circ -\angle BAE & \\
\angle ABE & = & 90^\circ -\angle BAE
\end{array}$
由此,$\angle DGF = 90^\circ -\angle BAE$。
另一方面,由於 $ABCD$ 為一長方形,可得
$\begin{array}{rcll}
\angle BAD & = & 90^\circ & \text{(長方形性質)} \\
\angle DAE & = & \angle BAD -\angle BAE & \\
\angle DAE & = & 90^\circ -\angle BAE & \\
\angle DAE & = & \angle ABE & \\
\angle DAE & = & \angle DGF
\end{array}$
II 為正確。在 $\Delta BCE$ 和 $\Delta CGE$ 中,
$\begin{array}{rcllll}
\angle BEC & = & \angle CEG & = & 90^\circ & \text{(已知)} \\
\end{array}$
另外,
$\begin{array}{rcll}
\angle ABC & = & 90^\circ & \text{(長方形性質)} \\
\angle CBE & = & 90^\circ -\angle ABE \\
\angle ABE & = & \angle CGE & \text{(錯角,$AB$//$DC$)} \\
\angle GCE & = & 180^\circ -\angle CEG -\angle CGE & \text{(三角形內角和)} \\
\angle GCE & = & 180^\circ -90^\circ -\angle CGE & \\
\angle GCE & = & 90^\circ -\angle CGE \\
\angle GCE & = & 90^\circ -\angle ABE & \text{(已證)} \\
\angle DCE & = & \angle CBE & \text{(已證)}
\end{array}$
由此,$\Delta BCE \sim \Delta CGE$ (A.A.)。
III 為正確。在 $\Delta BCE$ 和 $\Delta FCE$ 中,
$\begin{array}{rcllll}
\angle CEF & = & \angle CEB & = & 90^\circ \\
CE & = & CE & & & \text{(公共邊)} \\
CF & = & AD & & & \text{(已知)} \\
AD & = & CB & & &\text{(長方形性質)} \\
CF & = & CB \\
\end{array}$
由此,$\Delta BCE \cong \Delta FCE$ (R.H.S.)。