$\left\{ \begin{array}{l}
x^2 +y^2 -4x -22y +75 = 0 & \ldots \unicode{x2460} \\
4x=3y & \ldots \unicode{x2461}
\end{array}\right.$
從 $\unicode{x2461}$,可得
$\begin{array}{rcl}
4x & = & 3y \\
x & = & \dfrac{3y}{4} \ldots \unicode{x2462}
\end{array}$
把 $\unicode{x2462}$ 代入 $\unicode{x2460}$,可得
$\begin{array}{rcl}
\left(\dfrac{3y}{4}\right)^2 +y^2 -4\left(\dfrac{3y}{4}\right) -22y +75 & = & 0 \\
\dfrac{9y^2}{16} +y^2 -3y -22y +75 & = & 0 \\
9y^2 +16y^2 -48y -352y +1200 & = & 0 \\
25y^2 -400y +1200 & = & 0 \\
y^2 -16y +48 & = & 0 \\
(y-4)(y-12) & = & 0 \\
\end{array}$
$\therefore y=4$ 或 $y=12$。
把 $y=4$ 代入 $\unicode{x2462}$,可得
$\begin{array}{rcl}
x & = & \dfrac{3 \times 4}{4} \\
x & = & 3
\end{array}$
把 $y=12$ 代入 $\unicode{x2462}$,可得
$\begin{array}{rcl}
x & = & \dfrac{3 \times 12}{4} \\
x & = & 9
\end{array}$
$\therefore$ 交點的坐標為 $(3,4)$ 及 $(9,12)$。
所求圓形的圓心
$\begin{array}{cl}
= & \left( \dfrac{3+9}{2}, \dfrac{4+12}{2} \right) \\
= & (6, 8)
\end{array}$
所求圓形的半徑
$\begin{array}{cl}
= & \dfrac{1}{2} \sqrt{(9-3)^2+(12-4)^2} \\
= & 5
\end{array}$
由此,所求圓形的方程為 $(x-6)^2+(y-8)^2 =25$。