- 2022 以後不在課程之內。
-
$\begin{array}{cl}
& \dfrac{d}{d\theta} \ln (\sec\theta+\tan\theta) \\
= & \dfrac{1}{\sec\theta+\tan\theta} \times (\sec\theta\tan\theta+\sec^2\theta) \\
= & \dfrac{\sec\theta(\tan\theta+\sec\theta)}{\sec\theta+\tan\theta} \\\
= & \sec\theta
\end{array}$ - 利用 (a)(i) 的結果,可得
$\begin{array}{rcl}
\sec\theta & = & \dfrac{d}{d\theta} \ln (\sec\theta+\tan\theta) \\
\dint \sec\theta d\theta & = & \ln(\sec\theta+\tan\theta)+C
\end{array}$由此,可得
$\begin{array}{rcl}
\dint \sec^3\theta d\theta & = & \dint \sec \theta \sec^2\theta d\theta \\
\dint \sec^3\theta d\theta & = & \dint \sec \theta d\tan\theta \\
\dint \sec^3\theta d\theta & = &\sec\theta\tan\theta-\dint\tan\theta d\sec\theta \text{ , 利用分部積分法}\\
\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta -\dint \tan\theta \times \sec\theta\tan\theta d \theta \\
\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta-\dint \tan^2\theta \sec\theta d\theta \\
\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta -\dint (\sec^2\theta -1)\sec\theta d\theta \\
\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta-\dint (\sec^3\theta -\sec\theta )d\theta \\
\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta-\dint \sec^3\theta d\theta +\dint\sec\theta d\theta \\
2\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta+\dint \sec\theta d\theta \\
2\dint \sec^3\theta d\theta & = & \sec\theta\tan\theta+\ln(\sec\theta+\tan\theta)+C \\
\dint \sec^3\theta d\theta & = & \dfrac{1}{2}\sec\theta\tan\theta+\dfrac{1}{2}\ln(\sec\theta+\tan\theta)+\dfrac{C}{2}
\end{array}$
-
- 設 $u=-x$。則 $du=-dx$。
當 $x=-a$ 時,$u=a$。
當 $x=a$ 時,$u=-a$。
$\begin{array}{cl}
& \dint_{-a}^a g(x)h(x) dx \\
= & \dint_a^{-a}g(-u)h(-u) (-du) \\
= & \dint_{-a}^a g(-u)h(-u)du \\
= & \dint_{-a}^a g(-x)h(-x) dx \text{ , 其中 $u$ 為啞變數。}\\
= & \dint_{-a}^a g(-x)h(x) dx \text{ , 對於所有 $x\in\mathbb{R}$,$h(x)=h(-x)$。}
\end{array}$由於對於所有 $x\in\mathbb{R}$,$h(x)=h(-x)$,則 $h(x)$ 為一偶函數。由此,可得
$\begin{array}{cl}
& \dint_0^a h(x) dx \\
= & \dfrac{1}{2} \dint_{-a}^a h(x) dx \\
= & \dfrac{1}{2} \dint_{-a}^a [g(x)+g(-x)] h(x) dx \text{ , 對於所有 $x\in\mathbb{R}$,$g(x)+g(-x)=1$。} \\
= & \dfrac{1}{2}\left(\dint_{-a}^ag(x)h(x) dx +\dint_{-a}^a g(-x)h(x)dx \right) \\
= & \dfrac{1}{2}\left(\dint_{-a}^a g(x)h(x)dx + \dint_{-a}^a g(x)h(x) dx\right) \text{ , 上面已證。} \\
= & \dfrac{1}{2} \times 2 \dint_{-a}^a g(x)h(x) dx \\
= & \dint_{-a}^a g(x)h(x) dx
\end{array}$ - 設對於所有 $x\in\mathbb{R}$,$g(x) =\dfrac{3^x}{3^x+3^{-x}}$ 及 $h(x)=\dfrac{x^2}{\sqrt{x^2+1}}$。
檢查:
$\begin{array}{cl}
& g(x) + g(-x) \\
= & \dfrac{3^x}{3^x+3^{-x}}+\dfrac{3^{-x}}{3^{-x}+3^{-(-x)}} \\
= & \dfrac{3^x}{3^x+3^{-x}}+\dfrac{3^{-x}}{3^{-x}+3^{x}} \\
= & \dfrac{3^x+3^{-x}}{3^x+3^{-x}} \\
= & 1
\end{array}$另外,
$\begin{array}{cl}
& h(-x) \\
= & \dfrac{(-x)^2}{\sqrt{(-x)^2+1}} \\
= & \dfrac{x^2}{\sqrt{x^2+1}} \\
= & h(x)
\end{array}$由此,我們可以在 (c) 部中利用 (b) 部的結果。對於 $a=1$,可得
$\begin{array}{cl}
& \dint_{-1}^1 \dfrac{3^x x^2}{(3^x+3^{-x})\sqrt{x^2+1}}dx \\
= & \dint_{-1}^1 g(x)h(x) dx \\
= & \dint_0^1 h(x)dx \text{ , 利用 (b) 的結果。} \\
= & \dint_0^1\dfrac{x^2}{\sqrt{x^2+1}}dx
\end{array}$設 $x=\tan\theta$。則 $dx =\sec^2\theta d\theta$。
當 $x=0$ 時,$\theta=0$。
當 $x=1$ 時,$\theta=\dfrac{\pi}{4}$。
$\begin{array}{cl}
& \dint_0^1\dfrac{x^2}{\sqrt{x^2+1}}dx \\
= & \dint_0^\frac{\pi}{4} \dfrac{\tan^2\theta}{\sqrt{\tan^2\theta+1}} \times \sec^2\theta d\theta \\
= & \dint_0^\frac{\pi}{4} \dfrac{\tan^2\theta\sec^2\theta}{\sqrt{\sec^2\theta}} d\theta \\
= & \dint_0^\frac{\pi}{4}(\sec^2\theta-1)\sec\theta d\theta \\
= & \dint_0^\frac{\pi}{4} (\sec^3\theta-\sec\theta)d\theta \\
= & \left[\dfrac{1}{2}\sec\theta\tan\theta+\dfrac{1}{2}\ln(\sec\theta+\tan\theta)\right]_0^\frac{\pi}{4}-\left[\ln(\sec\theta+\tan\theta)\right]_0^\frac{\pi}{4} \text{ , 利用 (a)(ii) 的結果。} \\
= & \dfrac{1}{2}\sec \dfrac{\pi}{4}\tan\dfrac{\pi}{4}+\dfrac{1}{2}\ln\left(\sec\dfrac{\pi}{4}+\tan\dfrac{\pi}{4}\right) -\dfrac{1}{2}\sec 0\tan 0 +\dfrac{1}{2}\ln(\sec 0+ \tan 0) \\
& \ \ \ \ -\ln\left(\sec\dfrac{\pi}{4}+\tan\dfrac{\pi}{4}\right)+\ln(\sec 0+ \tan 0) \\
= & \dfrac{1}{2}\times \sqrt{2}\times 1+\dfrac{1}{2}\ln(\sqrt{2}+1)-\dfrac{1}{2}\times 1 \times 0+\dfrac{1}{2}\ln(1+0)-\ln(\sqrt{2}+1)+\ln(1+0) \\
= & \dfrac{\sqrt{2}}{2} -\dfrac{1}{2}\ln(\sqrt{2}+1)
\end{array}$
2021-M2-09
答案:(a) (i) $\sec \theta$ (ii) $\ln( \sec\theta +\tan \theta) +C$, $\dfrac{1}{2} \sec\theta \tan \theta +\dfrac{1}{2} \ln (\sec\theta +\tan\theta) +C$ (c) $\dfrac{\sqrt{2}}{2} -\dfrac{1}{2} (\ln (\sqrt{2}+1)$