-
- 由於 $\av{AB}$ 與 $5\bv{i}-4\bv{j}-2\bv{k}$ 互相平行,所以存在 $\mu\in\mathbb{R}$,
$\begin{array}{rcl}
\av{AB} & = & \mu(5\bv{i}-4\bv{j}-2\bv{k}) \\
\av{OB}-\av{OA} & = & 5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k} \\
12\bv{i}-s\bv{j}-2\bv{k}-t\bv{i}-14\bv{j}-s\bv{k} & = & 5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k} \\
(12-t)\bv{i}+(-s-14)\bv{j}+(-2-s)\bv{k} & = & 5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k} \\
\end{array}$透過比較兩方的分量,可得
$\left\{ \begin{array}{ll}
12-t=5\mu & \ldots \unicode{x2460} \\
-s-14=-4\mu & \ldots \unicode{x2461} \\
-2-s=-2\mu & \ldots \unicode{x2462}
\end{array}\right.$$\unicode{x2461}-2\times \unicode{x2462}$,可得
$\begin{array}{rcl}
-s-14-2(-2-s) & = & 0 \\
s-10 & = & 0 \\
s & = & 10
\end{array}$把 $s=10$ 代入 $\unicode{x2462}$,可得
$\begin{array}{rcl}
-2-10 & = & -2\mu \\
\mu & = & 6
\end{array}$把 $\mu=6$ 代入 $\unicode{x2460}$,可得
$\begin{array}{rcl}
12-t & = & 5(6) \\
12-t & = & 30 \\
t & = & -18
\end{array}$ - 所求的面積
$\begin{array}{cl}
= & \dfrac{1}{2} \left| \av{AB} \times \av{AC} \right| \\
= & \dfrac{1}{2} \left| (5\mu\bv{i}-4\mu\bv{j}-2\mu\bv{k})\times(\av{OC}-\av{OA})\right| \\
= & \dfrac{1}{2} \left| (30\bv{i}-24\bv{j}-12\bv{k})\times(12\bv{i}-16\bv{j}+10\bv{k}+18\bv{i}-14\bv{j}-10\bv{k})\right| \\
= & \dfrac{1}{2} \left|(30\bv{i}-24\bv{j}-12\bv{k})\times(30\bv{i}-30\bv{j}) \right| \\
= & \dfrac{1}{2} \left| \begin{vmatrix} \bv{i} & \bv{j} & \bv{k} \\ 30 & -24 & -12 \\ 30 & -30 & 0 \end{vmatrix}\right| \\
= & \dfrac{1}{2} \left| \begin{vmatrix} -24 & -12 \\ -30 & 0 \end{vmatrix} \bv{i} -\begin{vmatrix} 30 & -12 \\ 30 & 0 \end{vmatrix} \bv{j}+\begin{vmatrix} 30 & -24 \\ 30 & -30 \end{vmatrix} \bv {k}\right| \\
= & \dfrac{1}{2}|-360\bv{i}-360\bv{j}-180\bv{k}| \\
= & \dfrac{1}{2} \sqrt{(-360)^2+(-360)^2+(-180)^2} \\
= & 270
\end{array}$ - 2022 以後不在課程之內。
依題意略繪下圖。
所求的體積
$\begin{array}{cl}
= & \dfrac{1}{6} \left|(\av{AB}\times \av{AC})\cdot\av{AD}\right| \\
= & \dfrac{1}{6} \left| (-360\bv{i}-360\bv{j}-180\bv{j}) \cdot (\av{OD}-\av{OA})\right| \\
= & \dfrac{1}{6} \left| (-360\bv{i}-360\bv{j}-180\bv{j}) \cdot (18\bv{i}+12\bv{j}+14\bv{k}+18\bv{i}-14\bv{j}-10\bv{k})\right| \\
= & \dfrac{1}{6} \left| (-360\bv{i}-360\bv{j}-180\bv{j}) \cdot (36\bv{i}-2\bv{j}+4\bv{k})\right| \\
= & \dfrac{1}{6} \left| (-360)(36)+(-360)(-2)+(-180)(4)\right| \\
= & \dfrac{1}{6} |-12960| \\
= & 2160
\end{array}$ - 設 $d$ 為由 $D$ 至 $\Pi$ 的最短距離。
$\begin{array}{rcl}
\dfrac{1}{3} \times \Delta ABC \text{ 的面積} \times d & = & \text{四面體 } ABCD \text{ 的體積} \\
\dfrac{1}{3} \times 270 \times d & = & 2160 \\
d & = & 24
\end{array}$所以,由 $D$ 至 $\Pi$ 的最短距離為 $24$。
- 由於 $\av{AB}$ 與 $5\bv{i}-4\bv{j}-2\bv{k}$ 互相平行,所以存在 $\mu\in\mathbb{R}$,
- 設 $M$ 為 $AB$ 的中點。若 $E$ 為 $\Delta ABC$ 的外心,則 $EM$ 必為 $AB$ 的垂直平分線。
考慮 $\av{DE}$,可得
$\begin{array}{cl}
& \av{DE} \\
= & \left(\dfrac{\av{AD}\cdot(\av{AB}\times\av{AC})}{|\av{AB}\times\av{AC}|} \right) \times \dfrac{\av{AB}\times\av{AC}}{|\av{AB}\times\av{AC}|} \\
= & d \times \dfrac{-360\bv{i}-360\bv{j}-180\bv{k}}{\sqrt{(-360)^2+(-360)^2+(-180)^2}} \\
= & 24 \times \dfrac{-360\bv{i}-360\bv{j}-180\bv{k}}{540} \\
= & -16\bv{i}-16\bv{j}-8\bv{k}
\end{array}$由此,可得
$\begin{array}{rcl}
\av{EA} & = & \av{DA}-\av{DE} \\
\av{EA} & = & -36\bv{i}+2\bv{j}-4\bv{k} +16\bv{i}+16\bv{j}+8\bv{k} \\
\av{EA} & = & -20\bv{i}+18\bv{j}+4\bv{k}
\end{array}$以及
$\begin{array}{rcl}
\av{EB} & = & \av{EA}+\av{AB} \\
\av{EB} & = & -20\bv{i}+18\bv{j}+4\bv{k}+30\bv{i}-24\bv{j}-12\bv{k} \\
\av{EB} & = & 10\bv{i}-6\bv{j}-8\bv{k}
\end{array}$考慮 $\Delta ABE$,利用分點公式,可得
$\begin{array}{rcl}
\av{EM} & = & \dfrac{1}{2}\left(\av{EA}+\av{EB}\right) \\
\av{EM} & = & \dfrac{1}{2}(-20\bv{i}+18\bv{j}+4\bv{k}+10\bv{i}-6\bv{j}-8\bv{k}) \\
\av{EM} & = & \dfrac{1}{2}(-10\bv{i}+12\bv{j}-4\bv{k}) \\
\av{EM} & = & -5\bv{i}+6\bv{j}-2\bv{k}
\end{array}$由此,可得
$\begin{array}{cl}
& \av{EM}\cdot\av{AB} \\
= & (-5\bv{i}+6\bv{j}-2\bv{k})\cdot(30\bv{i}-24\bv{j}-12\bv{k}) \\
= & (-5)(30)+(6)(-24)+(-2)(-12) \\
= & -270 \\
\neq & 0
\end{array}$所以,$EM$ 並不垂直於 $AB$。
由此,$EM$ 不是 $AB$ 的垂直平分線。
由此,$E$ 不是 $\Delta ABC$ 的外心。
2021-M2-12
答案:(a) (i) $s=10$, $t=-18$ (ii) $270$ (iii) $2160$ (iv) $24$ (b) 不是