答案:D
在 $\Delta ABD$ 及 $\Delta CAE$ 中,
$\begin{array}{rcll}
AB & = & CA & \text{(等邊三角形)} \\
AD & = & CE & \text{(已知)} \\
\angle BAD & = & \angle ACE & \text{(等邊三角形)}
\end{array}$
$\therefore \Delta ABD \cong \Delta CAE$ (S.A.S.)。
由此,可得
$\begin{array}{rcll}
\angle EAC & = & \angle DBA & \text{($\cong\Delta$ 的對應角)} \\
\angle EAC & = & \angle ABC -\angle CBD \\
\angle EAC & = & 60^\circ -38^\circ & \text{(等邊三角形)} \\
\angle EAC & = & 22^\circ
\end{array}$
在 $\Delta ACE$,
$\begin{array}{rcll}
\angle AEB & = & \angle CAE +\angle ACE & \text{(三角形的外角)} \\
\angle AEB & = & 22^\circ +60^\circ & \text{(等邊三角形)} \\
\angle AEB & = & 82^\circ
\end{array}$