2018-II-01
答案:B
$\begin{array}{cl}
& \dfrac{8^{2n+1}}{4^{3n
… Read $\begin{array}{cl}
& \dfrac{8^{2n+1}}{4^{3n
透過比較 $y = a(x
$\begin{array}{rcl}
m_{L_1}
$\begin{array
$\begin{array}{cl}
= & 100000 \times (1 + \
$\begin{array}{rcl}
3a & = & 4b \\
\dfrac
$\begin
$\begin{array}{rcl}
a_3 & = & a_1 + a_2 \\
$\begin{array}{rcl}
\dfrac{1-2x}{3} & \ge &
由此,$ABCD
$\begin{array}{cl}
= & \sqrt{17^2
$\begin{array}{rcl
$\begin{array}{rcl
$\begin{array}{rcll}
$\begin{array}{rcll}
\angle CD
$\