2008-II-01
答案:B
$\begin{array}{cl}
& \left(\dfrac{1}{2}\rig
… Read $\begin{array}{cl}
& \left(\dfrac{1}{2}\rig
$x^2-y^2=(x+y)(x-y)$
II 不能被因式分解。
III 有因式
$\begin{array}{rcl}
T(1) &
$\begin{array}{rcl}
x(1+50\%)
$\begin{array}{cl}
= &
$\begin{array}{cl}
= & \dfrac{1}{2}
設 $r\text{ cm}$ 及 $l \text{ cm}$ 分別為底半徑及斜高。由於其底圓的周界 $1
$\begin{array}{cl}
= & \dfrac{1}{2
$\begin