2018-II-33
答案:D
透過利用兩點式,可得
… Read 透過利用兩點式,可得
$\begin{array}{rcl}
\dfrac{\log_4 y -2}
$\begin{array}{rcl}
\dfrac{\log_4 y -2}
$\begin{array}{rcl}
\dfrac{\log_3 x}{8} +
$\begin{array}{rcl}
\dfrac{3}{3y R
$\begin{array}{rcl}
\dfrac{x^3}{-4
把 $y=0$ 代入 $y=a+\log_b x$,可得
$\begin{array}{rcl}
0
考慮圖像中直線的方程,可得
$\begin{array}{rcl}
\dfrac{\log_5 y
$\begin{array}{rcl}
\log (-345)^{768} & =
利用截距式,可得
$\begin{array}{rcl}
\dfrac{x}{3} +\dfrac
$\left\{ \begin{array}{ll}
\log_4 y = 2x-1 & \ld
利用直線方程的截距式,可得
$\begin{array}{rcl}
\dfrac{\log_4 x